Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The data management plan (DMP), while seen by many as an ancillary document during a grant application, is a rich source of contextual information that is key to ensuring researchers, funders, and institutions follow the best possible and most appropriate research data management (RDM) practices. Unfortunately, the current practice is to transmit this information to the funder as a PDF or Word file through their web portals. As optimizing internal workflows and information sharing is a priority across the research space, retooling DMPs as machine-readable and machine-actionable will enable leveraging of key information to build RDM strategies collectively. Similarly, there is a growing need to streamline workflows, reuse information and reduce the burden on researchers.more » « less
-
Recent developments in the use of artificial intelligence in the diagnosis and monitoring of glaucoma are discussed. To set the context and fix terminology, a brief historic overview of artificial intelligence is provided, along with some fundamentals of statistical modeling. Next, recent applications of artificial intelligence techniques in glaucoma diagnosis and the monitoring of glaucoma progression are reviewed, including the classification of visual field images and the detection of glaucomatous change in retinal nerve fiber layer thickness. Current challenges in the direct application of artificial intelligence to further our understating of this disease are also outlined. The article also discusses how the combined use of mathematical modeling and artificial intelligence may help to address these challenges, along with stronger communication between data scientists and clinicians.more » « less
-
Abstract The relationship between people, place, and data presents challenges and opportunities for science and society. While there has been general enthusiasm for and work toward Findable, Accessible, Interoperable, and Reusable (FAIR) data for open science, only more recently have these data-centric principles been extended into dimensions important to people and place—notably, the CARE Principles for Indigenous Data Governance, which affect collective benefit, authority to control, responsibility, and ethics. The FAIR Island project seeks to translate these ideals into practice, leveraging the institutional infrastructure provided by scientific field stations. Starting with field stations in French Polynesia as key use cases that are exceptionally well connected to international research networks, FAIR Island builds interoperability between different components of critical research infrastructure, helping connect these to societal benefit areas. The goal is not only to increase reuse of scientific data and the awareness of work happening at the field stations but more generally to accelerate place-based research for sustainable development. FAIR Island works reflexively, aiming to scale horizontally through networks of field stations and to serve as a model for other sites of intensive long-term scientific study.more » « less
An official website of the United States government
